024

01-24

Jan 24 -024. Surfer – Barth Sextic #3 after a segment of the Fibonacci sequence – at the end this time…

A 1.00 zoom 0.05

4((a(1+sqrt(5))/2)^2x^2-1y^2)((a(1+sqrt(5))/2)^2y^2-1z^2)((a(1+sqrt(5))/2)^2z^2-1x^2)-1(1+2(a(1+sqrt(1))/1))(x^8+y^5+z^3-2*1)^1=0

Advertisements

023

01-23

Jan 23 -023. Surfer – Barth Sextic #3 with a segment of the Fibonacci sequence.

A 0.27 zoom 0.28

1((a(1+sqrt(2))/3)^5x^8-13y^21)((a(1+sqrt(5))/2)^2y^2-1z^2)((a(1+sqrt(5))/2)^2z^2-1x^2)-1(1+2(a(1+sqrt(5))/2))(x^2+y^2+z^2-1*1)^2=0

021

01-21

Jan 21 -021. Surfer – Barth Sextic #1

Moving to the third series of images extracted from the Surfer program.The Barth sextic is a surface of degree 6 (sextic). It was defined by mathematician Wolf Barth in 1966 and is composed of 65 singularities.

A 1.00 zoom 0.45

45((a(51+sqrt(55))/1)^5x^12-1y^2)((a(1+sqrt(5))/2)^2y^2-1z^2)((a(1+sqrt(5))/2)^2z^2-1x^2)-1(1+2(a(1+sqrt(5))/2))(x^2+y^2+z^2-1*1)^2

019

01-19

Jan 19 – 019. Surfer – Surface of degree 7 singularities #9

Zoom 0.74

x^9-1136x^7y^2+126x^5y^4-1184x^3y^6+9xy^8+64z^9-119x^8+126x^6y^2-11126x^2y^6+9y^8+27x^7-11 27x^5y^2-11135x^3y^4-1181xy^6-11144z^7-1121x^6-11225x^4y^2+45x^2y^4-1139y^6-1136x^5+72x^3y ^2+108xy^4+108z^5+54x^4+108x^2y^2+54y^4+9x^3-1127xy^2-1130z^3-1127x^2-1127y^2+2.25z+4=0